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Abstract 

Mesenchymal stem cells (MSCs) are highly valued in regenerative medicine due to their ability 

to self-renew and differentiate into various cell types. Their therapeutic benefits are primarily 

due to their paracrine effects, in particular through extracellular vesicles (EVs), which are 

related to intercellular communication. Recent advances in EV production and extraction 
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technologies highlight the potential of MSC-derived EVs (MSC-EVs) in tissue engineering and 

regenerative medicine. MSC-EVs offer several advantages over traditional cell therapies, 

including reduced toxicity and immunogenicity compared to whole MSCs. EVs carrying 

functional molecules such as growth factors, cytokines and miRNAs play beneficial roles in 

tissue repair, fibrosis treatment and scar prevention by promoting angiogenesis, skin cell 

migration, proliferation, extracellular matrix remodeling and reducing inflammation. Despite 

the potential of MSC-EVs, there are several limitations to their use, including variability in 

quality, the need for standardized methods, low yield, and concerns about the composition of 

EVs and the potential risks. Overall, MSC-EVs are a promising alternative to cell-based 

therapies, and ongoing studies aim to understand their actions and optimize their use for better 

clinical outcomes in wound healing and skin regeneration. 

 

Key words: Mesenchymal stromal cells, Exosomes, Paracrine factors, Skin repair, Wound 

healing 

 

1. Introduction 

Mesenchymal stem cells (MSCs) can be isolated from various tissues, including bone 

marrow, umbilical cord, placenta, adipose, and dental pulp (Figure 1)(Costela-Ruiz et al., 2022) 

and they possess the ability to differentiate into a number of cell types such as osteoblasts, 

chondrocytes, cardiomyocytes, adipocytes, and neurons (Caplan, 1991; Yang et al., 2018). In 

skin wound healing, MSCs promote cell migration, angiogenesis, and tissue repair, fostering a 

regenerative environment rather than fibrosis. Adipose-derived MSCs (AD-MSCs) have been 

approved to treat fistulas caused by Crohn's disease, and other studies are investigating the use 

of MSCs as a therapeutic strategy for burns and wrinkles. Regarding the function of MSCs in 
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tissue homeostasis, it has been suggested that indirect effects, such as paracrine signaling-based 

regulation of neovascularization, proliferation and differentiation of surrounding stem cells and 

immune responses, play a greater role in tissue regeneration than direct differentiation in 

synchrony with surrounding tissues (Hosseini et al., 2019; Rahmani et al., 2020; Xue et al., 

2024).  

As it has been experimentally demonstrated that these paracrine effects are mediated by 

extracellular vesicles (EVs), which contain a variety of intracellular bioactive molecules as 

well as signaling molecules secreted by mesenchymal stem cells, the application of EVs or 

secretomes has emerged as an alternative to reduce the risks of live cell therapies (Jeppesen et 

al., 2019; Kalluri and LeBleu, 2020; Liang et al., 2014). For example, an excessive and 

prolonged inflammatory response following trauma can impede the regeneration of skin tissue, 

but chemokines and cytokines contained in AD-MSC-EVs can effectively regulate the 

inflammatory response and promote wound healing (Wang et al., 2022). As a cell-free therapy, 

EVs minimize the likelihood of immune rejection and tumor formation, and are effective in 

promoting wound healing through angiogenesis and anti-inflammatory mechanisms (Marofi et 

al., 2021; Stahl and Raposo, 2019). Traditional wound care methods, including anti-

inflammatory drugs and dressings, are often ineffective for chronic wounds such as diabetic 

foot ulcers (Jones et al., 2018). In addition, stem cell transplantation, which aims to replace lost 

skin, requires a large number of cells to rebuild large areas of skin tissue, which remains a 

major hurdle and requires the development of more effective treatments (Hynds et al., 2018). 

MSC-derived EVs (MSC-EVs) may surpass traditional MSC therapies in safety and efficacy, 

and represent a promising strategy for wound healing and trauma treatment (Deng et al., 2023; 

Jo et al., 2021; Moghadasi et al., 2021). 

This mini-review provides an overview of the role of MSC-EVs and their mechanisms in 
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skin wound healing and regeneration processes. Recent research on MSC-EVs is also briefly 

reviewed, as well as the potential and limitations for clinical application of MSC-EVs. 

 

2. Mesenchymal stem cells 

MSCs, originally identified for their capacity to form bone and marrow when transplanted 

(Friedenstein et al., 1974; Friedenstein et al., 1966), were named by Caplan in 1991 (Caplan, 

1991) and are also referred to as mesenchymal stromal cells due to their differentiation 

characteristics. The International Society for Cellular Therapy (ISCT) defines MSCs by their 

plasticity, specific surface markers (CD105, CD73, CD90) and ability to differentiate into 

osteoblasts, chondrocytes and adipocytes (Dominici et al., 2006). MSCs have shown 

therapeutic promise in the treatment of acute graft-versus-host disease (GVHD) (Martinez-

Carrasco et al., 2019), bone defects (Levy et al., 2020) and kidney injury (Yun and Lee, 2019). 

MSCs contribute to tissue repair by promoting wound healing, reducing scarring, 

modulating immune responses, and enhancing collagen synthesis through paracrine effects 

(Wu et al., 2024). For example, the factors they secrete, including transforming growth factor-

beta (TGF-β), indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2), suppress the 

activity of T and natural killer (NK) cells while promoting the function of regulatory T cells 

and inhibiting B cell activation (Gao et al., 2016). During inflammation, MSCs become 

activated and secrete additional factors that support immune regulation and tissue repair. They 

also release growth factors such as epidermal growth factor (EGF) and hepatocyte growth 

factor (HGF), which stimulate cell proliferation and facilitate wound healing through the 

HGF/cMET and EGF receptor signaling pathways (Tamama and Kerpedjieva, 2012; Yang et 

al., 2021). Furthermore, MSCs promote angiogenesis by secreting vascular endothelial growth 

factor (VEGF), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1), which 
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support the growth and differentiation of endothelial cells (Kwon et al., 2014; Tao et al., 2016). 

Their anti-fibrotic effects and ability to produce extracellular matrix (ECM) components, such 

as collagen and fibronectin, in response to injury further enhance tissue repair (Rockel et al., 

2020; Shi et al., 2010). 

While clinical trials show mixed results, there have been positive outcomes in wound 

healing and skin regeneration. For example, adipose tissue-derived MSCs reduced matrix 

metalloproteinase (MMP)-1 and -2 levels and increased collagen type I in aged skin (Lee et al., 

2021). Umbilical cord-derived MSCs (UC-MSCs) have been shown to accelerate wound 

healing and reduce erythema (Kim et al., 2020a), and in diabetic foot ulcers, both UC-MSCs 

and bone marrow-derived MSCs (BM-MSCs) promoted wound healing and neovascularization 

without complications (Qin et al., 2016; Vojtassak et al., 2006). Additionally, Wharton's jelly-

derived MSCs (WJ-MSCs) seeded on acellular amniotic membranes significantly reduced 

wound size (Hashemi et al., 2019), and MSCs have shown promise in treating burns by 

reducing inflammation, enhancing neovascularization, and regulating ECM remodeling to 

minimize scarring (Bian et al., 2022; Burk et al., 2022). 

However, despite their effectiveness and several advantages, challenges associated with 

MSC therapy remain, including reduced effectiveness with prolonged culture, difficulties in 

targeting and retaining cells at sites of injury (van Hennik et al., 1999; Zhou et al., 2021a). In 

addition, MSC therapy carries risks of immune rejection, tumor formation, and viral infection 

(Ankrum and Karp, 2010). 

 

3. Extracellular vesicles 

The recognition that the therapeutic benefits of MSCs are largely attributable to their 
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paracrine effects (Dittmer and Leyh, 2014), and that EVs can serve as viable substitutes for 

these cells, offers promising avenues for further research (Jafarinia et al., 2020). EVs are small 

membrane-bound particles that are naturally released from cells and found in various body 

fluids (Lotvall et al., 2014). EVs can be isolated using methods such as ultracentrifugation 

(Livshits et al., 2015), ultrafiltration (Lobb et al., 2015), and size exclusion chromatography 

(Foers et al., 2018), and advances in these EV extraction technology have led to a number of 

recent studies. As a cell-free therapy, EVs have several advantages; they are non-replicative, 

present minimal tumorigenic risk (Phinney and Pittenger, 2017), and can traverse protective 

barriers such as the blood-brain barrier (BBB) due to their biocompatibility and low 

immunogenicity (Milbank et al., 2021). Furthermore, EVs are stable, maintaining their contents 

even after multiple freeze-thaw cycles (Zhuang et al., 2021), and can be produced in large 

quantities by immortalized cell lines (Xunian and Kalluri, 2020). 

EVs can be categorized into several subtypes (Todorova et al., 2017): exosomes (30–200 

nm), microvesicles (100–1000 nm), apoptotic bodies (50–5000 nm) (Doyle and Wang, 2019; 

Raposo and Stoorvogel, 2013), and oncosomes (1–10 μm), which are observed in cancer cells 

(Di Vizio et al., 2009). EVs are produced through distinct pathways: apoptotic bodies result 

from cell death, microvesicles arise from the budding of the cell membrane, and exosomes are 

formed via the endolysosomal pathway (Yang et al., 2019). Also they are enriched with a 

diverse array of bioactive molecules, including proteins, lipids, and nucleic acids (Pathan et al., 

2019), which play crucial roles in regulating numerous physiological and pathological 

processes (Jeppesen et al., 2019). 

 

3.1. Exosomes 

Exosomes were first identified by Harding and Stahl during their research on iron uptake 
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in reticulocytes (Harding and Stahl, 1983). These disc-shaped small EVs can be isolated from 

various bodily fluids, including serum, saliva and urine (Colombo et al., 2014; Mi et al., 2020; 

Zhu et al., 2024). Exosome formation involves several steps (Figure 1): the plasma membrane 

invaginates to form early endosomes, which mature into late endosomes and eventually 

multivesicular bodies (MVBs) (Piper and Katzmann, 2007; Zhang et al., 2019). MVBs can 

either fuse with lysosomes for degradation or fuse with the plasma membrane to release 

exosomes into the extracellular space (Piper and Katzmann, 2007; Stahl and Raposo, 2019). 

The regulation of these processes require the participation of a number of proteins, including 

Rab GTPases (RAB27A, RAB11, RAB31) (Juan and Furthauer, 2018; Vanlandingham and 

Ceresa, 2009), endosomal sorting complex required for transport (ESCRT) complexes (Doyle 

and Wang, 2019; Henne et al., 2011; Juan and Furthauer, 2018), annexins, tetraspanins (CD63, 

CD81, and CD9) (Verweij et al., 2011), and lipids such as ceramide and cholesterol. After 

secretion, exosomes facilitate intercellular communication via vesicle docking, membrane 

fusion, and receptor-mediated endocytosis (Costa Verdera et al., 2017; Rai and Johnson, 2019). 

Exosomes influence target cell behavior by transferring a diverse array of biomolecules, and 

play a crucial role in disease diagnosis and treatment of diseases (Bian et al., 2022). 

 

3.2. Microvesicles 

Microvesicles, also referred to as microparticles, differ from exosomes in their mode of 

formation. They arise from the outward budding and fission of the plasma membrane, a process 

that occurs when a cell is either stimulated or undergoing apoptosis (Willms et al., 2018). 

Despite this distinction, microvesicles are characterized by high biocompatibility, low 

immunogenicity, and effective targeting capabilities, which render them suitable as drug 

carriers (Skog et al., 2008). For example, microvesicles derived from tumor cells can be utilized 
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to deliver chemotherapeutic agents, thereby enhancing the efficacy of cancer treatment while 

minimizing side effects and adverse reactions (Ma et al., 2016; Tang et al., 2012). 

 

3.3. EVs derived from MSCs 

MSC-EVs are typically circular, well-defined particles characterized by a phospholipid 

bilayer and a diverse array of molecular components (Bazzoni et al., 2020; Del Fattore et al., 

2015). These EVs are identified by traditional markers such as CD63, CD9, and CD81, as well 

as mesenchymal stem cell surface markers including CD29, CD105, CD44, CD73, and CD90 

(Juan and Furthauer, 2018; T et al., 2016). Additionally, they also express lysosome-associated 

membrane proteins (LAMP1 and LAMP2) (Zoller, 2009) and specific factors that are critical 

for their unique biological functions, including pro-inflammatory and anti-inflammatory 

cytokines, enzymes, and various other proteins (O'Brien et al., 2020), as well as miRNAs (Qiu 

et al., 2018; Xu et al., 2019). Currently, MSC-EVs are being evaluated in clinical trials for a 

range of diseases, with ongoing assessments of their safety and efficacy (Kou et al., 2022). 

MSCs-cell therapy has multi-faceted benefits and potential for wound healing; however, their 

application is often limited due to the risk of immune rejection. In contrast, MSC-EVs carry 

therapeutic molecules, yet lack major histocompatibility complex (MHC) class I and II antigens, 

thereby reducing the risk of immune rejection. (Nicolay et al., 2015). Additionally, these 

vesicles have the ability to cross biological barriers such as the blood-brain barrier and 

effectively transport therapeutic molecules due to their small size and lipid bilayer (Keshtkar 

et al., 2018). MSC-EVs also have the potential to replace the need for large numbers of MSC 

transplants and prolonged cell culture to reconstruct lost skin. 

 

4. Therapeutic potential of MSC-EVs in skin injury and wound repair 
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4.1. Wound healing process 

The process of wound healing is a complex one, involving a multitude of cell types and 

interactions across four distinct phases (Figure 2): hemostasis, inflammation, proliferation, and 

remodeling (or maturation) (Bian et al., 2022; Gantwerker and Hom, 2011). The process of 

hemostasis commences within minutes, initiating platelet activation and coagulation to form 

fibrin clots that serve as a scaffold for inflammatory cells (Hoffman, 2018; Rodrigues et al., 

2019), while the subsequent inflammatory phase is initiated within 24 hours of injury and is 

characterized by the clearing bacteria and debris through the action of neutrophils and 

macrophages (Ellis et al., 2018). M1 macrophages are responsible for clearing pathogens and 

eventually shift to M2 macrophages that promote tissue repair and resolve inflammation 

(Gantwerker and Hom, 2011). During the proliferation phase, the wound is filled with new 

tissue and blood vessels to supply oxygen (Ben Amar and Wu, 2014). It entails fibroblast-

driven collagen production and ECM formation, which are vital for fibroblast and keratinocyte 

migration (Cialdai et al., 2022). This is followed by the remodeling phase, which commences 

around the third week, can persist for years, entailing the breakdown and replacement of type 

III collagen with type I collagen within the ECM (Rodrigues et al., 2019). Disruptions at any 

stage of this process can impair healing, leading to chronic wounds or persistent ulcers (Shao 

et al., 2020). 

 

4.2. MSC-EVs in skin repair 

Traditional treatments for acute and chronic wounds have included debridement, 

dressings, anti-inflammatory drugs, skin grafts, and cytokine applications (Chen et al., 2023). 

However, these conventional methods have certain limitations and side effects, such as 

prolonged healing times, risk of infection, and bleeding. Additionally, many wounds remain 
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unresponsive or resistant to standard therapies. Advances in biotherapy, particularly with 

MSCs and their EVs, provide more effective and less invasive options for treating skin wounds 

and trauma by supplementing, replacing, or repairing damaged cells, tissues, and organs to 

address the underlying trauma. 

MSC-EVs are emerging as a promising cell-free therapy for skin wound healing and tissue 

regeneration, with studies showing that EVs derived from sources such as bone marrow, 

adipose, umbilical cord and Wharton's jelly effectively enhance angiogenesis and skin re-

epithelialization (Table 1). While MSCs contribute to skin repair by differentiating into resident 

skin cells such as dermal fibroblasts and endothelial cells (Mazini et al., 2020; Stenqvist et al., 

2013), their EVs primarily facilitate intercellular communication with a variety of target cells 

such as macrophages, microglia and endothelial cells (Luo et al., 2022). MSC-EVs facilitate 

wound healing through a number of mechanisms, including homing effects (Hu et al., 2016), 

immunomodulation (Su et al., 2019), preventing epithelial apoptosis (Shen et al., 2022), 

regulating macrophage polarization and anti-inflammatory actions (He et al., 2019), and 

enhanced angiogenesis (Ding et al., 2023; Zhang et al., 2015b). For instance, exosomes derived 

from bone marrow, adipose tissue, umbilical cord are abundant in growth factors, including 

VEGF and platelet-derived growth factor-BB (PDGF-BB), enhancing skin cell proliferation 

and migration. These EVs also promote angiogenesis and nerve regeneration, reduce 

inflammation, and minimize fibrosis, often exhibiting greater effects than MSCs that directly 

differentiate into tissue-specific cells (Caplan and Dennis, 2006; Liu et al., 2020b). These 

effects are mediated by various bioactive molecules within EVs and their target signaling, with 

their composition and concentration varying according to the MSC type from which they 

originate. Consequently, the regulatory effects of EVs on these cellular processes may be 

influenced by their origin and the characteristics of the target cell (Hoang et al., 2020). 
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4.3. Mechanisms of MSC-EVs in skin repair 

The role of EVs in the wound repair process is not confined to a specific phase. During 

the hemostatic phase, MSC-EVs promote coagulation by enhancing the expression of 

phosphatidylserine and tissue factor (Silachev et al., 2019). In the inflammatory phase, MSC-

EVs play a crucial role in wound healing and scar reduction due to their ability to modulate 

immune responses. EVs contribute to the reduction of inflammation by modulating oxidative 

stress and decreasing levels of pro-inflammatory cytokines, including interferon-gamma (IFN-

γ), interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha (TNF-α) (Yang et al., 2015). 

Simultaneously, they facilitate the expression of anti-inflammatory cytokines, such as 

interleukin-10 (IL-10) (Eirin et al., 2017; Guo et al., 2019) and interleukin-4 (IL-4) (Han et al., 

2021; Yan et al., 2022). Zhou et al. observed that both local and intravenous application of AD-

MSC-exosome accelerated wound healing by down-regulating inflammatory markers such as 

TNF-α and IL-6, while up-regulating factors such as VEGF and proliferation cell nuclear 

antigen (PCNA) (Zhou et al., 2021b). 

MSC-EVs facilitate the polarization of macrophages toward the anti-inflammatory M2 

phenotype, attenuate neutrophil-driven inflammation, and influence microvascular remodeling 

(Gregorius et al., 2021). For example, He et al. found that exosomes from BM-MSCs could 

induce macrophage polarization towards the M2 phenotype, thereby promoting wound repair, 

likely through miR-223 targeting Pknox1 (He et al., 2019). They also can accelerate wound 

closure and re-epithelialization by enhancing Wnt signaling and activating the AKT pathway 

and nerve regeneration by promoting Schwann cell activation and angiogenesis, all of which 

are critical for effective wound healing. MSC-EVs also regulate T cell responses by promoting 

a shift toward a regulatory T cell (Treg) phenotype and reduce fibrosis, highlighting their 

Jo
ur

na
l P

re
-p

ro
of



 

 

therapeutic potential for managing chronic inflammatory conditions and accelerating wound 

repair (Zhang et al., 2023). MSC-EVs also have been shown to inhibit complement activation 

via CD59, thereby reducing interactions between neutrophils and complement components 

(Loh et al., 2022). 

During the regenerative phases of hyperplasia and remodeling, MSC-EVs have been 

shown to promote several key regenerative processes, including fibroblast proliferation, ECM 

production, re-epithelialization, and angiogenesis (Hu et al., 2022). For instance, MSC-EVs 

enhance fibroblast proliferation and migration, increase the deposition of collagen types I and 

III through the PI3K/AKT signaling pathway, and support fibroblast differentiation to minimize 

scarring (Wang et al., 2017; Zhang et al., 2018). Additionally, AD-MSC-EVs and BM-MSC-

EVs have been observed to promote cell proliferation, reduce apoptosis, and activate pathways 

such as Wnt/β-catenin and miR-93-3p/APAF1 (Ma et al., 2019; Shen et al., 2022). Research 

shows that Wharton's jelly MSC-conditioned medium promotes HUVEC proliferation, 

sebaceous gland regeneration and angiogenesis, and has shown efficacy in the treatment of 

radiation dermatitis and skin regeneration in rats (Sun et al., 2019). 

Furthermore, MSC-EVs have demonstrated anti-aging and anti-scarring properties by 

reducing cellular senescence markers and modulating ECM remodeling, which in turn 

minimizes fibroblast differentiation into myofibroblasts and prevents excessive scarring (Oh et 

al., 2018). Jiang et al. found that BM-MSC-exosome improved scar formation and wound 

healing by affecting the TGF-β/Smad pathway, specifically by upregulating TGF-β3 and 

Smad7 (Jiang et al., 2020). Conditioned medium derived from UC-MSC contains growth 

factors such as EGF, basic fibroblast growth factor (bFGF) and rejuvenating factors such as 

growth differentiation factor-11 (GDF-11), which support skin rejuvenation by promoting cell 

migration and extracellular matrix production, and the treatment of skin inflammation by 
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promoting an anti-inflammatory macrophage phenotype (Kim et al., 2020b; Kim et al., 2018). 

In particular, UC-MSCs have higher levels of TGF-β than BM- or AD-MSCs, resulting in more 

pronounced effects on fibroblast-to-myofibroblast transition and anti-scarring properties. 

 

5. Limitations, challenges and strategies for MSC-EV-based therapies 

Before MSC-EVs can be widely implemented in clinical settings, several challenges must 

be addressed. These include the variability in EV quality from different MSC sources and 

batches, which complicates quality control and increases the risk of inconsistent therapeutic 

outcomes (Yin et al., 2019). Structure, composition, and effects of EVs can vary depending on 

cellular sources, isolation methods, and culture conditions. Standardizing production methods 

and implementing robust quality assurance protocols are crucial for overcoming these 

challenges (Meng et al., 2020). A deeper understanding of EV’s heterogeneity is also crucial 

for optimizing clinical applications (Kalluri and LeBleu, 2020). 

Additionally, MSCs derived from adult tissues have a limited capacity for proliferation, 

which restricts the large-scale production of EVs. The efficacy of EVs can be enhanced through 

pretreatments such as hypoxia, cytokine exposure, or biochemical treatments (Domenis et al., 

2018; Wang et al., 2021), but achieving production consistency remains challenging. Utilizing 

MSCs derived from pluripotent stem cells (PSCs) presents a viable solution, as they exhibit 

higher proliferation rates and the ability to produce substantial quantities of EVs (Li et al., 2014; 

Lian et al., 2010). Despite the advantages of iPSC-derived MSC-EVs, there are still obstacles 

to overcome, including the need for standardized protocols for EV generation, isolation and 

characterization. 

Safety concerns, including potential carcinogenic effects and variability in in vivo 

responses, remain unresolved. A comprehensive understanding of the pharmacokinetics, 
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pharmacodynamics, and biodistribution of EVs is essential for determining optimal dosages 

and administration routes, as well as for developing Good Manufacturing Practice (GMP)-

compliant protocols and standardized Standard Operating Procedures (SOPs) for EV isolation 

and donor selection (Roefs et al., 2020). Establishing these guidelines will ensure consistent 

therapeutic outcomes and mitigate potential side effects, thereby making MSC-EVs a viable 

therapeutic option in regenerative medicine. 

Current strategies to improve therapeutic efficacy and reduce limitations include the 

development of modified EVs with alterations to their surface, membrane, and internal 

composition, or combining them with biological scaffolds. EVs can be enhanced through 

external and internal modifications, or by developing EV-mimetic nanovesicles (NVs) (Park et 

al., 2019), which can be designed to carry biomolecules such as mRNA and non-coding RNAs 

and improve targeting (Golchin et al., 2022; Yao et al., 2023). For example, miRNA-126-

loaded EVs have been shown to activate the PI3K/Akt signaling pathway and promote vascular 

remodeling (Zhang et al., 2021). Additionally, integrating EVs with biomaterials such as 

hydrogels and 3D-printed scaffolds is emerging strategy aimed at enhancing their clinical 

applications in wound healing and regenerative medicine (Cao et al., 2020b; Lee et al., 2024; 

Qazi et al., 2017). 

 

6. Conclusion 

MSC-EVs show significant potential for wound healing due to their immunomodulatory 

and regenerative properties, as well as their ability to promote angiogenesis, reduce 

inflammation, and facilitate tissue remodeling. However, several barriers hinder their clinical 

application, including variability in EV quality, limited scalability, and challenges in 

characterization and sustained therapeutic release (Ding et al., 2023). A more profound 
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comprehension of MSC-EVs and overcoming of current issues, such as the establishment of 

standardized EV production protocols, will be crucial for the translation of MSC-EVs into 

effective clinical treatments for acute and chronic wounds. Combining EVs with advanced 

bioengineering technologies could also further enhance their use as a viable alternative to cell-

based therapies in medicalapplications for treating various wounds. 
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Figure 1. A schematic diagram illustrating the sources of MSCs and the biogenesis of 

exosomes. 

 

Figure 2. A schematic diagram of the skin repair process and the potential roles of EVs. 

 

Table 1. Summary of studies on MSC-EVs involved in in vivo wound healing (Cao et al., 2020a; 

Cheng et al., 2020; Fang et al., 2016; Franco da Cunha et al., 2020; Haertinger et al., 2020; He 

et al., 2019; Heo and Kim, 2022; Hoang et al., 2020; Jiang et al., 2020; Li et al., 2022; Li et al., 

2021; Liu et al., 2020a; Ren et al., 2019; Sun et al., 2019; Wang et al., 2019; Wu et al., 2020; 

Xie et al., 2022; Yan et al., 2022; Zhang et al., 2015a; Zhang et al., 2018; Zhao et al., 2020; 

Zhao et al., 2023; Zhou et al., 2021b; Zhu et al., 2022). 

EV Source 
Key 

Findings/Mechanism/P
athway 

Target Cells Reference 

Human 
adipose 

mesenchy
mal stem 

Downregulation of 
inflammatory markers 

(TNF-α, IL-6) Wound healing cells Zhou et al., 2021b  
Upregulation of VEGF 

and PCNA 
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cell 
(hADSC) 

miR-19b expression 

Fibroblasts, immune cells Cao et al., 2020a Regulation of TGF-β 
pathway via CCL1 

targeting 

Improvement of scar 
healing and reduction of 

fibrosis 
Hypertrophic scar fibroblasts Li et al., 2021 

Downregulation of IL-
17RA and P-SMad2/P-

SMad3 

Promotion of 
angiogenesis through 
upregulation of pro-

angiogenic molecules Endothelial cells, nerve cells 

Heo and Kim, 2022 

Reduction of apoptosis 
and promotion of SC 

proliferation Schwann cells 
Liu et al., 2020a 

Axonal regeneration 

Neurons, Schwann cells 
Haertinger et al., 

2020 

Schwann cell 
proliferation 

Neurotrophic factors 
and miRNAs 

Upregulation of growth 
factors (VEGFA, PDGF, 

EGF, FGF2) 
Fibroblasts, keratinocytes, 

endothelial cells 
Ren et al., 2019 

Activation of AKT, ERK, 
and STAT3 pathways 

Activation of PI3K/AKT 
pathway Fibroblasts Zhang et al., 2018 

Collagen production 

Mouse 
adipose 
tissue 

mesenchy
mal stem 

cell 
(mADSC) 

Modulation of CD4(+) T 
Lymphocytes via the 

TGF-β pathway T cells 

Franco da Cunha et 
al., 2020 

Human 
bone 

marrow 
mesenchy
mal stem 

cell 
(hBMSC) 

or 
nanopartic
le-treated 

Improved scar 
formation and wound 
healing by regulating 
TGF-β/Smad pathway Skin fibroblasts 

Jiang et al., 2020 

Induction of 
macrophage 

polarization towards the 
M2 phenotype 

Macrophages He et al., 2019 

miR-223 targeting of 
Pknox1 
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Mag-
BMSC 

exosomes 

Stimulation of primary 
dermal fibroblasts and 

anti-scarring effects Dermal fibroblasts 
Hoang et al., 2020 

Acceleration of wound 
closure and re-
epithelialization 

Epithelial cells, skin cells Zhang et al., 2015 
Enhancement of Wnt 

signaling and activation 
of the AKT pathway 

Inflammation 
modulation via M2 

macrophage 
polarization 

Macrophages Li et al., 2022 

NF-kappaB signaling 
pathway 

Promotion of peripheral 
nerve regeneration Neurons, vascular cells 

Zhao et al., 2020 

Promotion of 
angiogenesis and 

accelerated healing 
Endothelial cells, skin cells Wu et al., 2020 

Activation of the 
PI3K/AKT and ERK1/2 

pathways 

Human 
umbilical 

cord 
mesenchy
mal stem 

cell 
(hUCMSC) 

or 
Wharton's 

jelly 
mesenchy
mal stem 

cell 
(WJMSC) 

Facilitation of wound 
healing 

Skin cells Cheng et al., 2020 

Treatment of cutaneous 
nerve damage and 

promotion of wound 
healing 

Neurons Zhu et al., 2022 

Acceleration of diabetic 
wound healing through 

angiogenesis 
Vascular endothelial cells Yan et al., 2022 

Modulation of TLR4 
signaling through miR-

181c 
Macrophages Li et al., 2016b 

Reduction of 
inflammation in burn-
induced macrophages 

Enrichment of miRNAs 
(miR-21, -23A, -125b, -

145) Fibroblasts Fang et al., 2016 
Inhibition of the TGF-
β2/SMAD2 pathways 

Promotion of 
angiogenesis and 

HUVEC proliferation, 
minimal scarring Endothelial cells, skin cells 

Sun et al., 2019 

Promotion of 
angiogenesis 

Fibroblasts and vascular 
endothelial cells 

Zhao et al., 2023 

Jo
ur

na
l P

re
-p

ro
of



 

 

Enhancement of wound 
closure rate 

Human 
exfoliated 
deciduous 

teeth 
(SHED)-
derived 

MSC 

Stimulation of 
macrophage autophagy 

Macrophages Xie et al., 2022 

Reduction of itching 

Fetal 
dermal 

mesenchy
mal stem 

cell 
(FDMSC) 

Promotion of fibroblast 
proliferation and 

migration 
Fibroblasts Wang et al., 2019 

Activation of the Notch 
signaling pathway 
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